Worksheet \# 28: Linear and Higher-Order Approximation and Applications

1. What is the relation between the linearization of a function $f(x)$ at $x=a$ and the tangent line to the graph of the function $f(x)$ at $x=a$ on the graph?
2. (a) Use the linearization of \sqrt{x} at $a=16$ to estimate $\sqrt{18}$.
(b) Find a decimal approximation to $\sqrt{18}$ using a calculator.
(c) Compute both the absolute error and the percentage error if we use the linearization to approximate $\sqrt{18}$.
3. For each of the following, use a linear approximation to the change in the function and a convenient nearby point to estimate the value:
(a) $(3.01)^{3}$
(b) $\sqrt{17}$
(c) $8.06^{2 / 3}$
4. Suppose we want to paint a sphere of radius 200 cm with a coat of paint 0.1 mm thick. Use a linear approximation to approximate the amount of paint we need to do the job.
5. Let $f(x)=\sqrt{16+x}$. First, find the linearization to $f(x)$ at $x=0$, then use the linearization to estimate $\sqrt{15.75}$. Present your solution as a rational number.
6. Find the linearization $L(x)$ to the function $f(x)=\sqrt{1-2 x}$ at $x=-4$.
7. Find the linearization $L(x)$ to the function $f(x)=\sqrt[3]{x+4}$ at $x=4$, then use the linearization to estimate $\sqrt[3]{8.25}$.
8. Your physics professor tells you that you can replace $\sin (\theta)$ with θ when θ is close to zero. Explain why this is reasonable.
9. Suppose we measure the radius of a sphere as 10 cm with an accuracy of $\pm 0.2 \mathrm{~cm}$. Use linear approximations to estimate the maximum error in:
(a) the computed surface area.
(b) the computed volume.
10. Suppose that $y=y(x)$ is a differentiable function which is defined near $x=2$, satisfies $y(2)=-1$ and

$$
x^{2}+3 x y^{2}+y^{3}=9
$$

Use the linear approximation to the change in y to approximate the value of $y(1.91)$.
11. Use Taylor polynomials with $a=0$ to approximate $\frac{1}{\sqrt[10]{e}}$ to five decimal places.
12. (a) Use Taylor polynomials with $a=0$ to approximate $\int_{0}^{1} \sin \left(x^{4}\right) d x$ to four decimal places.
(b) Can you find an indefinite integral for this integrand? Why or why not?
13. Use Taylor polynomials with $a=0$ to approximate $\cos (1)$ to four decimal places.
14. (a) Use Taylor polynomials with $a=0$ to approximate $\int_{0}^{0.5} x^{2} e^{-x^{2}} d x$ to two decimal places.
(b) Can you find an indefinite integral for this integrand? Why or why not?
15. If $f(x)=\left(1+x^{3}\right)^{30}$, what is $f^{(58)}(0)$?

MathExcel Worksheet \# 28 Supplemental Problems

16. Suppose that a curve is given by the equation $x^{2}+y^{3}=2 x^{2} y$. Verify that the point $(1,1)$ lies on the curve. Use linear approximation to estimate the value of the y-coordinate when $x=1.2$.
17. A function $f(x)$ is approximated near $x=0$ by the second-degree Taylor polynomial $T_{2}(x)=5-7 x+$ $8 x^{2}$. Find the values of $f(0), f^{\prime}(0), f^{\prime \prime}(0)$, and $f^{\prime \prime \prime}(0)$, if possible.
18. (a) Find a parabola to best approximate the unit circle $x^{2}+y^{2}=1$ near the point $(0,1)$.
(b) Use your answer to part (a) to estimate the y-coordinate of the point on the upper half of the unit circle with the x-coordinate equal to 0.1 .
